

RELATÓRIO CIENTÍFICO APRESENTADO À EMPRESA ALLVITTA - SAÚDE ANIMAL

REVISÃO LITERÁRIA – PAREDE CELULAR DE LEVEDURA (MANANOLIGOSACARÍDEO/MOS) E BETAGLUCANOS

NOVEMBRO

1 PAREDE CELULAR DE LEVURA E BETAGLUCANOS NA SAÚDE DIGESTIVA DOS EQUINOS

A parede celular é obtida a partir do extrato de levedura e tem sido amplamente utilizada pela indústria de rações e suplementos. Para a sua obtenção, ocorre autólise das células no qual a fração insolúvel é separada por centrifugação e secada, posteriormente. A porção celular representa 26–32% do peso seco da levedura *Saccharomyces cerevisiae*, cuja composição pode variar de uma linhagem para outra, sendo, geralmente, constituída por carboidratos na forma de polissacarídeos (30-60%). Destes, 15-30% representam a fração de beta-glucanas e 15-30% de mananoligossacarídeo ou MOS, como é comumente encontrado (AMORIM & LOPES, 2009).

Beta-glucanos são polissacarídeos estruturais da parede celular de leveduras e fungos, onde a diferença entre eles está no tipo de conexão entre as unidades de glicose da cadeia principal e os ramos conectados à cadeia (MAGNANI & CASTRO-GOMEZ, 2008). Esses polissacarídeos pertencem a uma classe de substâncias chamadas de "modificadores da resposta biológica", alterando a resposta do hospedeiro ao estimular o sistema imunológico (BOHN et al., 1995).

Além disso, estudos relatam que beta-glucanos podem estimular o sistema imune natural, possuindo efeito imunomodulador, através da ativação de macrófagos e linfócitos, além da indução da expressão de diversas citocinas (COSTA, 2004; MAGNANI & CASTRO-GOMEZ, 2008). Esses polímeros ativam a resposta imune por meio do sistema complemento, diretamente ou com o auxílio de anticorpos, produzindo substâncias quimiotáxicas que induzem os leucócitos a migrar para o local da infecção. (NICHOLAS et al., 2001). Portanto, a resposta dos vertebrados ao β-glucano se inicia com o reconhecimento dos receptores da superfície celular. (BROWN & GORDON, 2001). Esses receptores foram identificados em células imunes. como macrófagos/monócitos, neutrófilos e células natural killer.. Conforme descrito por Tokunaka et al. (2002), o reconhecimento do beta-glucano pelos receptores pode ser influenciado pela dissolução do polissacarídeo.

O efeito imunomodulador dos beta-glucanos está envolvido tanto na imunidade celular quanto na humoral (SOLTÝS & QUINN, 1999; TAKAHASHI et al., 2001; TOKUNAKA et al., 2002; KUBALA et al., 2003). O sistema imune do hospedeiro pode ser estimulado pela β-glucana em resposta às infecções (TZIANABOS, 2000) e no

desenvolvimento de tumores (KOGAN et al., 2002; KHALIKOVA et al., 2005). Da mesma forma, existem diversos relatos que comprovam o efeito imunomodulatório em infecções de origem bacteriana (TZIANABOS et al., 1996; LIANG et al., 1998), parasitária (HOLBROOK et., 1981), fúngica (MEIRA et al., 1996) e viral (REYNOLDS et al., 1980; JUNG et al., 2004).

Rasayely International Journal of Equine Science https://rasayely-journals.com/index.php/ijes Vol 2(2); 37–47, 2023

Review Article Open Access

Prebiotics and Synbiotics in Equine Health and Disease

C. Giselle Cooke1,4, Zamira Gibb2, Christopher G. Grupen3, and Joanna E. Harnett1

¹School of Pharmacy, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, 2006, Australia ²Priority Research Centre in Reproductive Science, School of Environmental and Life Sciences, Faculty of Science, The University of Newcastle, Callaghan, New South Wales, 2308, Australia

³Sydney School of Veterinary Science, Faculty of Science, The University of Sydney, Camden, New South Wales, 2570, Australia

Como biomodulador, beta-glucanos apresentam a capacidade de deprimir respostas pró inflamatórias associadas à sepse, dessa forma, o efeito imunomodulador diminui a possibilidade de endotoxemia e morte do indivíduo (TZIANABOS, 2000). Contudo, podem ocorrer efeitos adversos da administração endovenosa de beta-glucanos com alto peso molecular, pois exibem afinidade para ligações variadas, além de atividades biológicas diversas (KUBALA et al., 2003). O que realça a importância do fornecimento via oral, como é o caso da utilização de suplementos na dieta de equinos.

Com objetivo semelhante, Tsukada et al. (2003) relatam que a administração oral de β-glucana extraída de *Saccharomyces cerevisiae* realça as funções dos linfócitos epiteliais do intestino, sendo absorvida pelo mesmo. Em um estudo sobre imunomoduladores, Tzianabos (2000) relatou que a dose, a via e o sincronismo de administração de um biomodulador, possivelmente, estimulam ou anulam a resposta imune do animal. Onde, sobre a ingestão contínua de beta-glucanos, podem diminuir os riscos de doenças crônicas em humanos e animais. Em estudo proposto por Kogan & Kocher (2007), a respeito da ação biológica de polissacarídeos da parede celular de *Saccharomyces cerevisiae* na nutrição de suínos, foi referido a importância do efeito protetor do beta-glucano ao organismo, pelo estímulo da imunidade local das mucosas, onde, naturalmente, são regiões permanentemente expostas a patógenos.

Da mesma forma, assim como beta-glucanos, estudos demonstraram que a manose, na forma de oligossacarídeos (mananoligossacarídeos/MOS), é amplamente utilizada na nutrição animal por apresentar capacidade de melhorar o sistema imune, aumentando a produção de ácido lático que, eventualmente, induz a proliferação de bactérias benéficas no intestino (SAVAGE et al., 1996). Com isso, pode reduzir a colonização de bactérias patogênicas no trato gastrointestinal do animal (COSTA, 2004).

Journal of Equine Veterinary Science 121 (2023) 104168

Contents lists available at ScienceDirect

Journal of Equine Veterinary Science

journal homepage: www.j-evs.com

Effect of Supplementation with Saccharomyces cerevisiae and β -glucans to Mares During Late Gestation on Colostrum Quality and Passive Transfer of Immunity in Foals

Gilvannya Gonçalves de Sobral^{1,*}, Oswaldo Christiano Gomes Neto², Gustavo Ferrer Carneiro¹

Além das qualidades que auxiliam na saúde digestiva e no desempenho direto dos animais, o MOS se tornou uma alternativa para a redução do uso de antibióticos na produção animal (BAKER & GONÇALVES, 2012), uma vez que foi relatada sua ação antimicrobiana (JENSEN et al., 2008).

As funções e morfologias intestinais são influenciadas por esse polissacarídeo (HEINRICHS et al., 2003), pois a manana fornece a possibilidade de sítios de ligação alternativos para bactérias gram-negativas que atacam o epitélio intestinal (FERKET et al., 2002), bloqueando a fixação bacteriana ao epitélio (NEWMAN, 1994), além de ligarse a muitos receptores de células de defesa do intestino, que ativam as defesas imunológicas, tais como a fagocitose (MURPHY et. al., 2007).

Veterinary World, EISSN: 2231-0916 Available at www.veterinaryworld.org/Vol.14/April-2021/3.pdf RESEARCH ARTICLE Open Access

Orally administered β-glucan improves the hemolytic activity of the complement system in horses

¹ Universidade Federal Rural de Pernambuco, Recife, PE, Brazil
² Central Monte Verde de Reprodução Equina, Sairê, PE, Brazil

2 REFERÊNCIAS

AMORIM, H. V., LOPES, M. L. Tecnologia sobre processamento de leveduras vivas, inativas e seus derivados: conceitos básicos. In: **Anais do I Congresso Internacional sobre uso da levedura na alimentação animal**, CBNA, Campinas, p. 5-20, 2009.

BAKER, V., GONÇALVES, D. Aspectos biotecnológicos de um polissacarídeo de *Saccharomyces cerevisiae* (manana) na medicina veterinária. **Revista Eletrônica da Faculdade Evangélica do Paraná**, v. 2, n. 4, p. 51-62, 2012.

BOHN, J. A., BEMILLER, J. M. (1-3)- β -D-Glucans as biological response modifiers: a review of structurefunctional activity relationships. **Carbohydrate Polymers**, v. 28, n. 1, p. 3-14, 1995.

BROWN, G. D., GORDON, S. A new receptor for β glucans. **Nature**, v. 413, n. 1, p. 36-37, 2001.

COSTA, L. F. Leveduras na Nutrição Animal. **Revista Eletrônica Nutritime**, v. 1, n. 1, p. 1-6, 2004.

MAGNANI, M., CASTRO-GOMEZ, R. J. H. β-glucana de Saccharomyces cerevisiae: constituição, bioatividade e obtenção. **Ciências Agrárias**, v. 29, n. 3, p. 631-650, 2008.

MURPHY, E. A., DAVIS, J. M., BROWN, A. S., CARMICHAEL, M. D., GHAFFAR, A., MAYER, E. P. Oat β-glucan effects on neutrophil respiratory burst activity following exercise. **Medicine & Science in Sports & Exercise**, v. 39, p. 639-644, 2007.

MURPHY, J., ARKINS, S. Equine learning behaviour. **Behavioural Processes**, v. 76, p. 1-13, 2007.

NICHOLAS, J. C., SHAUN, R. M. C. Production of chemokines in vivo in response to microbial stimulation. **The Journal of Immunology**, v. 166, n. 8, p. 5176-5182, 2001. SOLTÝS, J., QUINN, M. T. Modulation of endotoxinand enterotoxin- induced cytokine release by in vivo treatment with β -(1,6)-branched β -(1,3)-glucan. **Infection and Immunity**, v. 67, n. 1, p. 244-252, 1999.

TOKUNAKA, K., OHNO, N., ADACHI, Y., MIURA, N. N., YADOMAE, T. Application of Candida solubilized cell wall β-glucan in antitumor immunotherapy against P815 mastocytoma in mice. **Internacional Immunopharmacology**, v. 2, n. 1, p. 59-67, 2002.